
RESTARTING AN ARNOLDI REDUCTION �R. B. LEHOUCQyAbstract. The Arnoldi reduction is an e�cient procedure for approximating a subset of theeigensystem of a large sparse matrixA of order n: At each step, a partial orthogonal reduction of Ainto an upper Hessenberg matrix is produced. The eigenvalues of this Hessenberg matrix are used toapproximate a subset of the eigenvalues of the large matrix A. The approximation to the eigenvaluesof A generally improves as the order of the Hessenberg matrix increases. Unfortunately, so do thecost and storage of the reduction.A popular alternative is to de�ne an iteration by restarting the reduction with information in alength m < n Arnoldi reduction. The hope is that this restarted reduction has improved estimatesto the eigenvalues of A:This paper considers the various approaches used to restart a reduction. Analysis and numeri-cal examples are presented that explain and exhibit the generally superior properties of Sorensen'simplicitly restarted Arnoldi iteration. The analysis exploits the fact that an IRA iteration is math-ematically equivalent to a curtailed QR iteration.Key words. Arnoldi reduction, Lanczos reduction, restarting, eigenvalues.AMS subject classi�cations. 65F15, 65G051. Introduction. The Arnoldi reduction [2] is an orthogonal projection methodfor approximating a subset of the eigensystem of a general square matrix. Startingwith a vector x1, the reduction builds, step by step, an orthogonal basis for the Krylovsubspace of A: Km(A;x1) � Spanfx1;Ax1; : : : ;Am�1x1g:It is a generalization of the power method in that a sequence of iterates are used toapproximate eigenvalues of A: At every step of the reduction, the projection of Aonto Km(A;x1) is computed. This projection is an upper Hessenberg matrix of orderm: The eigenvalues of this projection matrix are used as approximations to those ofA: Since the reduction requires knowledge of A only through matrix-vector products,its value as a technique for approximating a few eigenvalues of a large sparse matrixwas soon realized. When the matrix A is symmetric, the Lanczos reduction [15] isrecovered.More than a decade of research has been devoted to understanding and overcom-ing the numerical di�culties of the Lanczos reduction. The works of Parlett [30] andCullum and Wiloughby [8] study in detail the many speci�cs of the Lanczos algo-rithm, while the paper by Grimes, Lewis, and Simon [13] discusses the design anddevelopment of high-quality software.Development of the Arnoldi reduction lagged behind because of the inordinatecomputational and storage requirements associated with the original method when alarge number of steps are required for convergence. The explicitly restarted Arnoldiiteration (era iteration) was introduced by Saad [32] to overcome these di�culties,based on similar ideas developed for the Lanczos process by Paige [27], Cullum andDonath [7], and Golub and Underwood [11]. Karush [14] proposes what appears to� This work was supported in part by ARPA (U.S. Army ORA4466.01), by the U.S. Departmentof Energy (Contracts DE-FG0f-91ER25103 and W-31-109-Eng-38), and by the National ScienceFoundation (Cooperative agreement CCR-9120008).y Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439lehoucq@mcs.anl.gov. 1



2 R. B. LEHOUCQbe the �rst example of a restarted iteration. The iteration is de�ned by a two-stageprocess. First, an Arnoldi/Lanczos reduction of length m < n is computed. Frominformation available in this reduction, another reduction is computed. This de�nesthe iteration and is deemed successful if improved estimates to the eigenvalues of Aappear in the subsequent reductions.A relatively recent variant was developed by Sorensen [39] as a more e�cientand numerically stable way to implement restarting. This technique, the implicitlyrestarted Arnoldi iteration (ira iteration), may be viewed as a truncation of the stan-dard implicitly shifted qr-iteration. This viewpoint provides an alternate approachto study restarted Arnoldi/Lanczos reductions in which the power of the qr algo-rithm is used. The immediate e�ect is the improvement of the numerical accuracyand convergence properties of the ARPACK [19] software package.The paper is organized as follows. Some notation and the real Schur decomposi-tion are introduced in x2. The eigenvalue problem and Arnoldi reduction along withmore notation are the subject of xx3{4. The era and ira iterations are examined inxx5{6, and an example comparing them is given x7. Three theorems that characterizean ira iteration are presented in x8. The polynomial accelerations techniques arereviewed in x9 along with an improved era iteration that incorporates a de
ationscheme. Some results of a numerical study are given in x10, and a theorem on theconvergence of an ira iteration is presented in x11. The paper is concluded in x12with a discussion on some important practical issues.2. Notation and Some Fundamentals. We shall now establish the basic no-tation to be used during the course of this study.We employ Householder notational conventions. Capital and lower-case letters de-note matrices and vectors, respectively, while lower-case Greek letters denote scalars.For clarity, upper-case matrices have a subscript to indicate the number of columns.The identity matrix of order m is denoted by Im: The jth canonical basis vector isdenoted by ej , the jth column of the identity matrix.The transpose of a vector x is denoted by xT , and xH denotes the complexconjugate of xT : The norms used are the Euclidean and Frobenius, denoted by k � kand k � kF , respectively. The range of a matrix A is denoted by R(A):2.1. Real Schur Decomposition. Since we are especially concerned with al-gorithms that result in robust and e�cient software, we focus on the following decom-position, which is a special case of the more general Schur decomposition. The specialcase allows us to compute strictly in real arithmetic. The proper resolution of complexconjugate pairs of eigenvalues comes from noting that if A(x+ iz) = (�+ i�)(x+ iz),where x and z are vectors in Rn with � 6= 0, thenA � x z � = � x z � � � ��� � � :(2.1)The following decomposition proves central to the eigenvalue algorithms consid-ered in this paper. This decomposition is computed by the practical qr algorithm inthe LAPACK [1] software library.Theorem 2.1. (Real Schur Decomposition) If A 2 Rn�n, there exists an orthog-



RESTARTING AN ARNOLDI REDUCTION 3onal Z 2 Rn�n such thatZTAZ = 26664 T11 T12 � � � T1m0 T22 � � � T2m... ... . . . ...0 0 � � � Tmm 37775 � T;(2.2)where each Tii is a square block of order one or two. The blocks of order two containthe complex conjugate eigenvalues of A. The matrix T is said to be in upper quasi{triangular matrix form.Proof. See [10, page 362].Let C be a quasi-diagonal orthogonal matrix with two by two blocks allowed onlywhere T has them. Then (ZC)TAZC = CTRC has diagonal blocks that are similarto those of T: Thus, apart from the eigenvalues of multiplicity larger than one, thedecomposition is essentially unique, given some ordering of the eigenvalues. Denotethe leading principal matrix of k blocks of T by Tk where no Tii is split. Let Zk be thecorresponding columns of Z: Then AZk = ZkTk is a partial real Schur decompositionof A of order k.3. The Eigenvalue Problem. Let A be a real matrix of order n: We are in-terested in a speci�ed set of k� n solutions to the matrix eigenvalue problemAu = �u:(3.1)The eigenvalues and eigenvectors of A are denoted by �j and uj, respectively, forj = 1; : : : ; n: We shall refer to these k eigenvalues as the wanted ones. The wantedeigenvalues of A requiring approximation typically are contained within some convexset of interest in the complex plane. Examples include those nearest the origin, andof largest real part. An important exception might be the dominant eigenvalues ofA, those largest in magnitude.The Arnoldi methods studied in this paper attempt to compute a partial realSchur decomposition for A with the group of the wanted eigenvalues located on thediagonal blocks of Tk: The methods considered require storage of O(kn): The fulldecomposition requires O(n2) storage. We say an eigenvalue problem is large if thedense qr algorithm is prohibative, either in storage and/or e�ciency.A quasi-diagonal form for A exists if there is a nonsingular matrix V such thatAV = VD, where D is a block diagonal matrix with each block of order one ortwo. The blocks of order two contain the complex conjugate pair of eigenvaluesas in equation (2.1) with � positive. The columns of V span the right eigenspacecorresponding to diagonal values of D: For the blocks of order two on the diagonal ofD, the corresponding complex eigenvector is stored in two consecutive columns of V,the �rst holding the real part, and the second the imaginary part.4. The Arnoldi Reduction. We �rst show how the Arnoldi reduction is ex-tended from length m to m+1 where m < n: Table 4.1 summarizes the procedure. Ifm = 1, then X1 = x1 represents the initial vector. Hm is an upper Hessenberg matrixof order m while Xm contains m vectors of length n that are mutually orthogonal.The residual vector fm is orthogonal to the columns of Xm: In order to ensure thatfm is orthogonal to the column space of Xm in �nite-precision arithmetic, some formof reorthogonalization is necessary at step 5. See Chapter 7 of [16].



4 R. B. LEHOUCQTable 4.1Extending an Arnoldi Reduction� Let AXm = XmHm + fmeTm be a length m Arnoldi reduction.1. �m+1 = kfmk:2. If �m+1 6= 0, then xm+1 = fm��1m+1;else set xm+1 to be an unit vector orthogonal to the column space of Xm:3. Xm+1 = � Xm xm+1 � :4. w = Axm+1:5. Hm+1 = � Hm XTmw�m+1eTm xTm+1w � :6. fm+1 = w�Xm+1Hm+1em+1:The matrixHm = XTmAXm is the orthogonal projection of A onto the R(Xm) �Km(A;x1): The Hessenberg matrix Hm is said to be unreduced if all of its subdiag-onal elements �m are nonzero. Note that the �rst subdiagonal element is �2: Thefollowing classical result explains that an Arnoldi reduction is completely speci�ed bythe starting vector.Theorem 4.1. (Implicit Q) Let two length m Arnoldi reductions be given byAXm = XmHm + fmeTm;AVm = VmGm + rmeTm;where Xm and Vm have orthonormal columns, and Hm and Gm are upper Hessenbergmatrices with positive subdiagonal elements. If the �rst columns of Xm and Vm areequal, then Hm = Gm , Xm = Vm and fm = rm:Proof. See [10, page 367].Let (sj; �j) for j = 1; : : : ;m be the eigenpairs of Hm where all the sj are of unitlength. The quality of the approximation of �j to an eigenvalue of A is determinedby observing that kAXmsj �Xmsj�jk = kfmk jeTmsj j:We call zj � Xmsj a Ritz vector, �j a Ritz value, and kfmk jeTmsjj the Ritz estimate.Thus we may easily compute the norm of the residual of a Ritz pair and avoid theapplication of A: We remark that a tiny Ritz estimate does not imply an accurateapproximation. We refer the reader to the work of Scott [37] for the many issues thatmust be considered for assessing the quality of Ritz pairs computed by the Arnoldireduction.As long as Hm is unreduced, standard results on upper Hessenberg matrices givethat eTmsj cannot be equal to zero, although in practical computation, they decreasein size as �j better approximates an eigenvalue of A: On the other hand, the vectorfm vanishes at the �rst step m such that Km+1(A;x1) = Km(A;x1) and hence isguaranteed to vanish for some m � n: The following result indicates when we mayexpect fm = 0: This is desirable because then the columns of Xm form an orthogonalbasis for an invariant subspace and the eigenvalues of Hm are those of A.Theorem 4.2. Let AXm = XmHm + fmeTm de�ne a m-step Arnoldi reductionof A, with Hm unreduced. Then fm = 0 if and only if x1 2 R(Zm), where AZm =ZmTm is a partial real Schur decomposition.Proof. See Chapter 2 of [16] or [39] for a proof based on the Jordan canonicalform.



RESTARTING AN ARNOLDI REDUCTION 5Table 5.1Explicitly Restarted Arnoldi Iteration� Start: Build a length m Arnoldi reduction AXm = XmHm+fmeTm with the startingvector x1:� Iteration: Until convergence1. Compute the eigensystem HmSm = SmDm ordered with the k wanted eigen-values located in the leading portion of the quasi-diagonal matrix Dm:2. Restart: Select the new starting vector x1 = Xmym where ym 2 Rm:3. Build a length m Arnoldi reduction with x1:In Theorem 4.2, the span of the m columns of Zm represents an invariant sub-space for A. In particular, the theorem gives that if the initial vector is a linearcombination of m eigenvectors, then fm vanishes. It is therefore desirable to devise amethod that forces the starting vector x1 to lie in the invariant subspace associatedwith the the wanted eigenvalues. We also remark that working in �nite-precisionarithmetic generally removes the possibility of the computed residual ever vanishingexactly. Suppose, however, that kfmk is small. Let HmVm = VmTm be a real Schurdecomposition. Then (A + Em)XmVm = XmVmTm is an exact real partial Schurform for a nearby problem where Em = �fmeTmVTmXTm: Note that kEmk = kfmk:The algorithms of this paper are appropriate when the order of A is so large thatstorage and computational requirements prohibit completion of the algorithm thatproduces Xn and Hn:5. An ERA Iteration. The basic explicitly restarted Arnoldi iteration is sum-marised in Table 5.1.The choice of m is usually a tradeo� between the length of the reduction thatmay be tolerated and the rate of convergence. From the results on the convergence ofKrylov spaces [33, 36], the accuracy of the Ritz values typically increases as m does.However, for increasing m, the number of Arnoldi vectors stored as well as the sizeof the Hessenberg matrix increases. For most problems, the size of m is determinedexperimentally. This issue is further addressed in x12.The selection of the expansion coe�cients in the vector ym is the most unsettlingdecision that needs to be made. Saad �rst suggested [32] choosing the coe�cientsso that the slowest converging Ritz vectors are favored the most. For example, letym  s1
1+ � � �+sk
k, where 
i = jeTmsij kfmk(= kAXmsi�Xmsi�ik): The resultingvector Xmym is a linear combination of the wanted Ritz vector. When �i has anonzero imaginary part, we set si and si+1 to be the real and imaginary portions ofthe complex eigenvector of Hm associated with �i:6. An IRA Iteration. The ARPACK software package [19] implements an implic-itly restarted Arnoldi method. Table 6.1 gives the basic algorithm as implementedby ARPACK. The scheme is called implicit because the starting vector is updated withan implicitly shifted qr algorithm on the Hessenberg matrix Hm: The method ismotivated by the following result.Lemma 6.1. Let AXm = XmHm + fmeTm be a length m Arnoldi reduction and (�) a polynomial of degree p = m � k where k < m:If the qr factorization of  (Hm) � e1 e2 � � � ek � = QkRk; then the columnsof XmQk are an orthogonal basis for R( (A)Xk):Proof. A straightforward induction argument shows that (A)Xk = Xm (Hm) � e1 e2 � � � ek � :(6.1)



6 R. B. LEHOUCQTable 6.1An Implicitly Restarted Arnoldi Iteration as Implemented by ARPACK.� Start: Build a length m Arnoldi reduction AXm = XmHm+fmeTm with the startingvector x1:� Iteration: Until convergence1. Compute the eigensystem HmSm = SmDm ordered with the k wanted eigen-values located in the leading portion of the quasi-diagonal matrix Dm:2. Perform m�k = p steps of the qr iteration with the unwanted eigenvalues ofDm as shifts to obtain HmQm = QmH+m:3. Restart: Postmultiply the length m Arnoldi reduction with Qk to obtain thelength k Arnoldi reduction AXmQk = XmQkH+k + f+k eTk : Note that Qkrepresents the matrix consisting of the leading k columns of Qm, and H+k isthe leading principal submatrix of order k of H+m:4. Extend the length k Arnoldi reduction to a length m one.Compute the qr factorization  (Hm) � e1 e2 � � � ek � = QkRk: Equation (6.1)may then be rewritten as  (A)Xk = XmQkRk, and the lemma is proved.This is a generalization of the special case  (�) = � shown in [22]. A similarresult was proved by Paige, Parlett, and Van der Vorst in Lemma 1 of [28] for theLanczos reduction.Restarting the iteration involves postmultiplying the length m Arnoldi factor-ization with Qk and thus obtaining a length k factorization. The actual compu-tation of Qk involves performing p steps of the qr algorithm on the current up-per Hessenberg matrix, using the zeros of  as shifts to obtain HmQm = QmH+m:This allows us to exploit the well-known connection between the qr algorithm andsubspace iteration [42]. Equate the �rst k columns of HmQm = QmH+m to getHmQk = QkH+k + �+k+1Qmek+1eTk : Note that eTmQk = (eTmQkek)eTk , since Qm is oflower bandwidth k, and thusAXmQk = XmHmQk + fmeTmQk;= XmQkH+k + �+k+1XmQmek+1eTk + fmeTmQk;(6.2) = XmQkH+k + f+k eTk ;where f+k � �+k+1XmQmek+1+(eTmQkek)fm: Thus, an ira-iteration may be viewed asa truncated qr algorithm. One cycle of the iteration is illustrated in Figures 6.1{ 6.3.7. Explicit and Implicit Restarting. We present a striking example thatcompares the era and ira iterations. Let A 2 R10�10 be zero everywhere except fordiagonal elements�11 = 1; �22 = 1; �33 = 0; �44 = 0; �ii = (5� i) � 10�1; for i = 1; : : : ; 6;and ones on the subdiagonal. Suppose that the vector e1 is used to start both explicitand implicitly restarted Arnoldi algorithms with k = 2 and m = 4 with the interestto compute the two eigenvalues equal to one. Using an exact shift strategy, an iraiteration computes the approximate partial real Schur decomposition AQ2 � Q2R2,where R2 � � :94919 :95789�2:6952 � 10�3 1:0508 � ;



RESTARTING AN ARNOLDI REDUCTION 7
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pkk + pFig. 6.1. The set of rectangles represents the matrix equation XmHm + fmeTm of an Arnoldireduction. The unshaded region on the right is a zero matrix of m� 1 columns.
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pkk + pFig. 6.2. After performing m� r implicitly shifted qr steps on Hm, the middle set of picturesillustrates XmQmH+m + fmeTmQm. The last p columns of fmeTmQm are nonzero because of the qriteration.
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kFig. 6.3. After discarding the last m� r columns, the �nal set represents XmQkH+k + f+k eTkof a length r Arnoldi factorization.with eigenvalues equal to 1 � i1:129168612228906 � 10�8: The number of iterationsneeded was four, and a total of ten matrix vector products was computed.However, the algorithm in Table 5.1 stagnates if the expansion coe�cients arechosen as originally proposed by Saad, as explained in x5. In fact, the starting vectore1 is computed during every cycle of the era iteration! During every iteration,H4 = 2664 1 0 0 01 1 0 00 1 0 00 0 1 0 3775



8 R. B. LEHOUCQis computed. The MATLAB function EIG computes the two eigenvectorssT1 = � 0 :57735 :57735 :57735 � ;sT2 = �sT1 + 1:8 � 10�18eT1corresponding to the two eigenvalues equal to one. Choosing y4 to be an unit vec-tor in the linear span of � kAX4s1 �X4s1k kAX4s2 �X4s2k 0 0 �T gives thatX4S4y4 = �e1:The explanation is simple enough. Although e1 is orthogonal to the eigenspaceassociated with the eigenvalue one of A; it is not orthogonal to the invariant subspaceassociated with the unit eigenvalue. This explains why the ira-iteration convergeswhile the era iteration does not.The major drawback of using a linear combination of the eigenvectors of Hm isthat they may form a poor choice for the starting vector. If Hm is defective, theremight not be enough eigenvectors associated with the wanted eigenvalues. A pair ofapproximate eigenvectors is produced that are aligned to working precision. On theother hand, using an expansion in terms of the Schur vectors of Hm gives a \richer"starting vector. Theorem 8.1 gives that the ira iteration implicitly uses a Schur basisof Hm.Golub and Wilkinson [12] examine the many practical di�culties involved whencomputing invariant subspaces. They conclude that working with Schur vectors is abetter behaved numerical process. Within the context of subspace iteration, Stew-art [41] also arrives at the same conclusion.8. Characterzing an IRA Iteration. We present three theorems that explainthe behavoir of an ira iteration in exact arithmetic. The �rst theorem is a generaliza-tion of Lemma 3.10 proved by Sorensen [39] and indicates what occurs when a certainchoice of shifts is used during an ira iteration. There are two major di�erences. The�rst is that there is no assumption on the existence of a basis of eigenvectors for thedesired invariant subspace. Only a Schur basis is used. The second is that we makeno assumptions on the multiplicities of the shifts applied.Theorem 8.1. Suppose Hm 2 Rm�m is an unreduced upper Hessenberg matrixcorresponding to a length m Arnoldi reduction AXm = XmHm + fmeTm and that theeigenvalues of Hm are in the partitionf�1; : : : ; �kg [ f�k+1; : : : ; �mg:Assume that the complex conjugate pairs of eigenvalues are kept together; �i = ��jimplies that i; j � k or i; j > k and that HmZk = ZkTk is a partial real Schurdecomposition, where the eigenvalues of Tk are �1; : : : ; �k:If m � k qr steps are performed with the eigenvalues �k+1; : : : ; �m producing anorthogonal matrix Qm 2 Rm�m such thatHmQm = Qm � H+11 H+120 H+22 � ;(8.1)the eigenvalues ofH+11 are �1; : : : ; �k and the �rst k columns of Qm span the associatedinvariant subspace.Moreover, the updated starting vector XmQme1 2 R(XmZk); andAXmQk = XmQkH+11 + (eTmQkek)fmeTk ;(8.2)



RESTARTING AN ARNOLDI REDUCTION 9is the updated Arnoldi reduction of length k.Proof. A result by Miminis and Paige [23, pages 391{395] proves equation (8.1).They prove that if m� k qr steps are performed, the matrix equation (8.1) results ifand only if the m � k shifts are eigenvalues of Hm, regardless of their multiplicity.Let Qk = Qm � e1 e2 � � � ek �, where HmQk = QkH+11: Let HmZk = ZkTk,be a real Schur decomposition where the eigenvalues of H+11 and Tk are the same.Thus, the columns of Qk and Zk span the same invariant subspace. It follows thatXmQme1 = XmQke1 = XmZkZTkQke1 � XmZkym;where ym = ZTkQke1: Postmultiply the length m Arnoldi reduction with Qk and useequation (6.2) to obtain equation (8.2), since �+k+1 = 0:The restriction that keeps the complex conjugate pairs of eigenvalues together isneeded only so that the iteration may be done in real arithmetic.Using the exact shifting strategy during the ira iteration replaces the startingvector with a linear combination of the wanted approximate Schur vectors. Theera iteration also has the same goal, but the ira iteration performs this replacementimplicitly in a stable fashion by using a Schur basis ofHm:Moreover, the ira iterationavoids the need to restart the next reduction from scratch.The second result shows that the polynomial implicitly applied by an ira iterationusing exact shifts is of minimal degree when we wish to restart an Arnoldi reductionwith a vector that is a linear combination of wanted spectral information in Hm:Theorem 8.2. Assume the same hypothesis of Theorem 8.1 with the additionthat the eigenvalues of Hm are distinct. Let (�) = mYj=k+1(�� �j);and denote the Ritz vectors by zj = Xmsj, where Hmsj = sj�j .If x̂1 2 Spanfz1; : : : ; zkg, then for some polynomial �(�) of degree not exceedingm � 1, x̂1 = �(A)x1;where �(�) =  (�)�(�) for some polynomial �(�) of degree at most k � 1.Proof. Let zj 2 Km(A;x1). Then, for every j, there is polynomial pj(�) of degreenot exceeding m�1 such that zj = pj(A)x1. Thus x̂1 = �(A)x1 for some polynomial�(�) of degree not exceeding m � 1. An easy consequence of equation (6.1) is thatx̂1 = �(A)x1 = �(A)Xme1 = Xm�(Hm)e1:Expand e1 = s1�1+� � �+sm�m and hence �(Hm)e1 = s1�(�1)�1+� � �+sm�(�m)�m:Since x̂1 2 Spanfz1; : : : ; zkg, it follows that �(�j)�j = 0 for j = k + 1; : : : ; n. De-note the left eigenvectors of Hm by vj indexed so that vHj Hm = vHj �j . Since theeigenvalues of Hm are distinct, the biorthogonality of the left and right eigenvectorsof Hm gives that vHj e1 = vHj sj�j and vHj sj 6= 0 for j = 1; : : : ;m. Standard resultson unreduced upper Hessenberg matrices give that vHj e1 6= 0. Hence �j 6= 0, and so�(�j) = 0 for j = k+1; : : : ;m. Thus  (�) must be a divisor of �(�), and the theoremis proved.If the goal of restarting is to select an improved starting vector consisting ofonly wanted Ritz vectors, Theorem 8.2 states that unwanted components might be



10 R. B. LEHOUCQintroduced if the degree of the polynomial is greater than m � k. Since any startingvector that is a linear combination of the columns of Xm is equal to �(A)x1 for somepolynomial (�) of degree not exceeding m�1; any linear combination of wanted Ritzvectors as in x5 is possibly introducing unwanted components.The following result shows that the Krylov space associated with the subsequentArnoldi reduction computed after an implicit restart with exact shifts also has someinteresting subspaces. It is a slight generalization of Theorem 3 proved byMorgan [25].Theorem 8.3. Assume the same hypothesis and notation as Theorem 8.1 withthe additional hypothesis that fm 6= 0. Suppose that m�k = p qr steps are performedwith the eigenvalues �k+1; : : : ; �m. If AX+m = X+mH+m+ f+meTm is the length m Arnoldireduction that results from extending the compressed reduction of equation (8.2) andH+m is unreduced, thenR(X+m) = R(XmQk) [ SpanfAzj; : : : ;Apzjg(8.3)holds for each Ritz vector zj = Xmsj, where Hmsj = sj�j for j = 1; : : : ; k.Proof. Partition the eigenvalues of Hm as in the hypothesis of Theorem 8.1.Let (sj; �j) be an eigenpair for Hm, where ksjk = 1, and set zj = Xmsj. De�nexm+1 � fm=kfmk and X+mej � x+j for j = 1; : : : ;m: Standard results give thatx+k+1 =  k(A)x+1 for some polynomial  k(�) of degree k.Note that by equation (8.2) of Theorem 8.1, we have x+k+1 = xm+1. It also followsthat Aix+k+1 = Ai k(A)x+1 2 Kk+i+1(A;x+1 ) for i = 1; : : : ;m� k � 1, which impliesthat SpanfXmQk;x+k+1; : : : ;Am�k�1x+k+1g � RfX+mg:(8.4)We now show that these two sets share the same dimension.Suppose that XmQky1 +Km�k(A;x+k+1)y2 = 0 for some y � � yT1 yT2 �T 2Rm. Thus, there exists a polynomial  (�) of degree less than m so that  (A)x+1 = 0.However, since H+m is unreduced, the grade of x+1 is at least m, and hence y � 0,which implies that the two sets in equation (8.4) are equal.Using mathematical induction, we show thatAizj 2 Spanfzj ;x+k+1; : : : ;Ai�1x+k+1g;for i = 1; : : : ;m� k. From the length m Arnoldi reduction, it follows thatAzj = zj�j + fm(eTmsj) = zj�j + xm+1(eTmsj)kfmk 2 Spanfzj;x+k+1g;establishing the base case. Suppose that the result is true for positive integers i� 1.The inductive hypothesis implies thatAizj 2 AAi�1zj2 ASpanfzj ;x+k+1; : : : ;Ai�2x+k+1g2 Spanfzj ;x+k+1; : : : ;Ai�1x+k+1g;and the desired result follows. Now, since zj 2 RfXmQkg and x+k+1 =  k(A)x+1 , itfollows from the established equality of the two sets in equation (8.4) thatSpanfXmQk;Azj; : : : ;Am�kzjg � RfX+mg:(8.5)



RESTARTING AN ARNOLDI REDUCTION 11If we use a similar argument to the one that followed equation (8.4), the two setsin equation (8.5) are equal. The �rst conclusion of the theorem in equation (8.3) isproved.In particular, if the eigenvectors s1; : : : ; sk of Hm are linearly independent, thenR(X+m) = Kp(A; zj) [i 6=j Spanfzig(8.6)for j = 1; : : : ; k: Morgan concludes that the Krylov subspace of length m generatedduring each cycle of an ira iteration with exact shifts contains all the Krylov subspacesof dimension p+ 1 generated from a wanted Ritz vector, sinceKp+1(A; zj) � Km(A;X+me1) � R(X+m):9. Polynomial Accelerations Techniques. Suppose A is diagonalizable witheigenpairs (uj; �j) for j = 1; : : : ; n: If  (�) is some polynomial and we expand thecurrent starting vector x1 in terms of the basis of eigenvectors, then (A)x1 = u1 (�1)�1 + � � �+ un (�n)�n:(9.1)Assuming that the eigenpairs (ui; �i) are ordered so that the wanted k ones are atthe beginning of the expansion, we seek a polynomial such thatmaxi=k+1;:::;n j (�i)j < mini=1;:::;k j (�i)j:(9.2)A good polynomial  (�) acts as a �lter . Components in the direction of unwantedeigenvectors are damped, or, equivalently, components in the direction of wantedeigenvectors are ampli�ed.The acceleration techniques and hybrid methods presented by Saad in Chapter 7of [36] attempt to improve the era iteration introduced in x5 by approximately solvingthe min-max problem of equation (9.2). Motivated by Manteu�el's scheme [20], Saad�rst proposed the use of Chebyshev polynomials in [34]. A Chebyshev polynomial (A) on an ellipse containing the unwanted Ritz values is applied to the restartvector in an attempt to accelerate convergence of the orginal era iteration. Thepolynomial is applied with the use of the familiar three-term recurrence.Table 9.1 outlines the procedure. It is called a de
ated iteration because a partialSchur decomposition is incrementaly built. We refer to the orthogonlization processin line 2 as locking . At each iteration, the Ritz pairs of the unlocked portion of theArnoldi reduction are ordered with respect some criterion. For example, if the eigen-values of largest magnitude are desired, the Ritz pair of interest is the one associatedwith the Ritz that satis�es this criterion. In order to compute in real arithmetic, theprocedure outlined in x2 is employed at line 2 if �1 is not a real number.10. Numerical Results. Lehoucq and Scott [17] presented a software survey oflarge-scale eigenvalue methods and comparative results. The Arnoldi-based softwareincluded the following three packages, which are available either in the public domainor under licence. These are the ARNCHEB package [4], the ARPACK [19] software package,and the Harwell Subroutine Library code EB13 [37].The ARNCHEB package provides the subroutine ARNOL, which implements an explic-itly restarted Arnoldi iteration. The code is based on the algorithm given in Table 9.1without the use of locking. It uses Chebyshev polynomial acceleration.The Harwell Subroutine Library code EB13 implements the algorithm given inTable 9.1 and also uses Chebyshev polynomial acceleration.



12 R. B. LEHOUCQTable 9.1A de
ated polynomial accelerated era iteration� Build a length m Arnoldi reduction. Set j = 0 and de�ne Q0 and T0 as emptymatrices.� Iteration:1. Compute the Ritz pair of interest (z1; �1):2. Check to see if (z1; �1) is an acceptable approximation. If so, increment j andcompute an unit vector qj in the direction of z1�Qj�1tj where tj = QTj�1z1:Set Qj = � Qj�1 qj � and Tj = � Tj�1 tj0 �1 � :3. If j = k, exit the Iteration.4. Compute the Arnoldi reductionA � Qj Xm�j � = � Qj Xm�j � � Tj MjHm�j � + fmeTm of length mwith starting vector  (A)Xm�je1 orthogonal to the R(Qj):The ARPACK software package provides subroutine DNAUPD that implements animplicitly restarted Arnoldi iteration.We present results for the two-dimensional model convection-di�usion problem��u(x; y) + �r �ru(x; y) = �u(x; y);on the unit square [0; 1] � [0; 1] with zero boundary data. Here, � represents theconvection and is a real number. The problem is discretized by using centered �-nite di�erences. The eigenvalues and eigenvectors of the resulting matrix are knownexplicitly. This feature allows us to check the accuracy of our results.The resulting matrix is interesting because of the following properties:� Many of the eigenvalues have multiplicity two. It may be shown that ifj�j � pn, the eigenvalues are all real and the matrix is diagonalizable.� As the mesh size decreases, the relative separation of all the eigenvalues de-creases. All the eigenvalues are contained within the interval (0; 8).� As � increases, so does the nonnormality of the matrix.We computed k = 6 eigenpairs of largest real part for a range of values of � andfor orders up to n = 10; 000. Tables 10.1 and 10.2 display the results of experimentsrun on an IBM RS/6000 3BT in double-precision arithmetic for two speci�c matrices.The column heading WHICH gives the portion of the spectrum the respective codewas asked to compute. The eigenvalues of largest real part are also those of largestmodulus. They are respectively denoted by WHICH = `LR' and `LM'. The length ofthe Arnoldi reduction generated is denoted by m: All the Ritz pairs computed werechecked and gave residuals of order O(10�12) with at least seven digits of accuracy forthe Ritz values. The numerical orthogonality of the Arnoldi vectors was also checked.The results show that the implementation of the ira iteration signi�cantly reducesthe total number of matrix vector products required. For many large-scale eigenvalueproblems, the dominant cost is that of performing the matrix-vector products. Forthese two examples, ARPACK reliably computed the multiplicities. Changing WHICHhas the e�ect of modifying the restart parameters. For further information and otherexperiments, we refer the reader to [17].11. Convergence of an IRA Iteration. Sorensen gives a convergence theo-rem [39, pages 369{370] for an ira iteration where the polynomial applied at everyrestart is �xed. The main result of this section gives conditions that determine the



RESTARTING AN ARNOLDI REDUCTION 13Table 10.1CPU times (in seconds) and matrix-vector products for the CDDE matrix with � = 10 of order2500. (y denotes that one or more of the requested eigenvalues was missed; � denotes that code didnot converge within 4000 m-dimensional matrix-vector products).Subspace Dimension mAlgorithm WHICH 18 36ARNCHEB LR y yARPACK LM 8.6/620 12/694ARPACK LR 8.3/602 11/613EB13 LM y 46/3383EB13 LR 41/12178 �Table 10.2CPU times (in seconds) and matrix-vector products for the CDDE matrix with � = 15 of order10000 (� denotes that code did not converge within 4000 m-dimensional matrix-vector products)Subspace Dimension mAlgorithm WHICH 18 36ARNCHEB LR � �ARPACK LM 71/1123 103/1398ARPACK LR 61/991 80/1095EB13 LM 727/20004 436/7263EB13 LR 1251/74107 �convergence of an ira iteration where the polynomial applied at every restart mayvary. Our approach exploits the fact that an ira iteration is a curtailed qr iterationand thus allows us to use this well-established convergence theory on upper Hessen-berg matrices. As mentioned in x2.1, computing a partial real Schur decompositioncorresponding to a small subset of the eigenvalues of A is the objective.Let l = p1+ � � �+ pr , where r designates how many restarts are performed, pi thedegree of the polynomial applied at the ith restart, and Z(l)m the accumlation of allthe orthogonal matrices applied through the qr iterations. Using the relationshipsderived through equation (6.2), we write the length k Arnoldi reduction asAXmZ(l)k = XmZ(l)k H(l)k + f (l)k eTk ;(11.1)where Z(l)k = Z(l)m � e1 e2 � � � ek � and Xm denotes the initial reduction to Hes-senberg form. Thus, we may examine the convergence of an ira iteration by studyingthe convergence of XmZ(l)k to an invariant subspace of dimension k: Since the ImplicitQ theorem (see x4) gives that H(l)k is the leading principal matrix of order k of H(l)nthat would be obtained if we performed the full qr algorithm on the full Hessenbergmatrix Hn, we study the convergence of the shifted qr iteration.A convergence theory for the shifted qr iteration was presented by Watkins andElsner [43] within the more general framework of generic GR algorithms. A gralgorithm is an iterative procedure such as the qr iteration where the qr factorizationis replaced with a decomposition of the form GnRn = Hn � �In, where Rn is uppertriangular and Gn is a nonsingular matrix.Theorem 11.1. Let Hn 2 Rn�n be an unreduced upper Hessenberg matrix and



14 R. B. LEHOUCQ	(�) be a polynomial. Order the eigenvalues �1; �2; : : : ; �n of H so that j	(�1)j �j	(�2)j � � � � � j	(�n)j.Let HnZn = ZnTn be a real Schur decomposition where the �rst k columns of Znspan an invariant subspace corresponding to the eigenvalues �1; : : : ; �k. Suppose k isa positive integer less than n such that �k � j	(�k+1)j=j	(�k)j < 1.If a sequence of shifts f�igli=1 has the properties that Qli=1 �i is a real number andPl(�i) � (�i � �1) � � � (�i � �l)! 	(�i); i = k + 1; : : : ; nPl(�i) 6= 0; i = 1; : : : ; k;as l !1, the qr iteration computes HnZ(l)n = Z(l)n H(l)n , whereH(l)n � " H(l)k M(l)k�(l)k+1e1eTk �H(l)n�k # ;and Z(l)n is an orthogonal matrix such that for every value of �̂k satisfying �k < �̂k < 1,there exists a constant C such that j�(l)k+1j � C(�̂k)l anddist(Zk;Z(l)k ) � C(�̂k)l;where Z(l)k contains the �rst k columns of Z(l)n :Proof. See Theorems 5.4 and 6.2 of Watkins and Elsner [43].If we partition the eigenvalues of A so that �1; : : : ; �k are the sought-after eigen-values, then 	(�) = nYi=k+1(�� �i);(11.2)is an example of the polynomial used by the theorem. The theorem gives the con-vergence rate of �(l)k+1 to zero, given a shifting strategy. Note that by the Implicit Qtheorem (see x4) and equation (11.1), kf (l)k k = �(l)k+1: The shifting strategy has thee�ect of replacing the starting vector, thereby restarting the reduction. Thus, theconvergence of an ira iteration is established.The distance between the subspaces [6, 10] R(Zk) and R(Z(l)k ) may be shownto be equal to q1� kZTkZ(l)k k2. For increasing values of l, the approximate Schurbasis vectors contained in Z(l)k span R(Zk): Thus, the dist(Zk;Z(l)k ) ! 0, and theeigenvalues of H(l)k tend to �1; : : : ; �k. It follows from the theorem that for all valuesof k such that �k < 1, the kth subdiagonal element of H(l)n tends to zero. Thehypothesis on the product of the shifts ensures that if one is applied with a nonzeroimaginary part, its complex conjugate is also a shift.The theorems proved by Watkins and Elsner in [43] identify the convergence of theqr algorithm with that of simultaneous iteration, or subspace iteration. Parlett [29]presents the �rst set of comprehensive su�cient conditions for convergence of theqr iteration on Hessenberg matrices, while a portion of the paper by Parlett andPoole [31] considers a geometric convergence theory for Hessenberg matrices.



RESTARTING AN ARNOLDI REDUCTION 1512. Practical Considerations. We have shown a direct connection betweenthe ira and qr iterations. With this connection, we believe that reliable general-purpose software for the large-scale eigenvalue problem is possible. The practicalqr algorithm [21] resulted when de
ation rules and practical shifting strategies wereincorporated. These techniques are extremely important for the convergence andstability of the iteration. They have contributed to the emergence of the practical qralgorithmas the method of choice for computing the eigensystem of dense matrices. Inparticular, the de
ation rules allow the qr iteration to compute multiple and clusteredeigenvalues. The reader is referred to [18] for a detailed study on de
ation strategiesfor an ira iteration. The remainder of this section discusses shifting strategies. Weremark that the shifting strategy of the practical qr algorithm cannot by employedbecause it requires the full reduction to upper Hessenberg form at every iteration.Although useful for characterzing the convergence of an ira iteration, Theo-rem 11.1 gives no indication on how well Pl(�) must approximate the polynomial	(�); let alone a practical shifting strategy. This is the subject of current research.We have examined one particular choice of polynomial, namely, one constructed fromthe unwanted Ritz values at every iteration. Other interesting strategies include theroots of Chebyshev polynomials [34], Harmonic Ritz values [24, 26, 28, 38], the rootsof Leja polynomials [3, 5], and the roots of least squares polynomials [35]. In partic-ular, the Harmonic Ritz values have been used to estimate the interior eigenvalues ofA: There also remains the interesting question of how many shifts pi to apply periteration. For example, if 	(�) = �n with j�kj > j�k+1j, then using zero shifts givesthat �(l)k+1 goes to zero with the convergence rate of j�k+1=�kj: It is well known thatperforming subspace iteration on a subspace of dimension larger than the number ofeigenvalues required typically leads to improved convergence rates; see the paper ofDu� and Scott [9] for a discussion and further references.For more general shifting strategies, we can expect �(l)k+1 to converge with theconvergence rate of maxk+1�i�n jPl(�i)jmin1�i�k jPl(�i)j � j	(�k+1)jj	(�k)j :(12.1)For example, if we use the unwanted Ritz values as shifts and 	(�) is de�ned as inequation (11.2), the convergence rate is approximately given by the ratio in the lefthand side of equation (12.1). Since the ratio is a complicated function involving theshifts applied, it is not obvious how to select the optimal value of pi that leads tothe optimal convergence. An adaptive strategy should be possible because we havea connection with subspace iteration. This connection may eventually shed light onhow many shifts to apply per restart, in other words, how to select pi relative to k:Another interesting approach is a variation of the algorithm in Table 9.1. Asin that algorithm, a partial Schur decomposition is built for the wanted Ritz valuesthat are good approximations to the desired eigenvalues �1; : : : ; �k: Let j denote thenumber of locked vectors. The only di�erence is in the way the restart is performed.First, a set of m � j shifts is determined. The shifts are the roots of a polynomialthat is small on the unwanted eigenvalues �k+1; : : : ; �m�j of Hm�j : The polynomialof degree m� j de�ned by these shifts is implicitly applied via an ira iteration. Thisapproach di�ers from the ira iteration outlined in Table 6.1 in two ways. The �rst isthat of de
ation. The other di�erence is that a large-degree polynomial is applied at



16 R. B. LEHOUCQevery step. For symmetric A; Baglama, Calvetti, and Reichel [3] use Leja shifts, andthis strategy outperforms ARPACK for small m: ARPACK uses a polynomial of degreeat most m � k as compared with the degree m � j polynomial used by the de
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